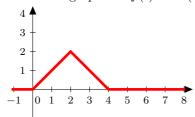
Corrigé du devoir sur la transformation de Laplace

Exercice 1

1. Dessiner le graphe de f(t) = tU(t) - 2(t-2)U(t-2) + (t-4)U(t-4)



2. Déterminer la transformée de f(t) = tU(t) - 2(t-2)U(t-2) + (t-4)U(t-4)

$$F(p) = \frac{1}{p^2} - 2\frac{1}{p^2}e^{-2p} + \frac{1}{p^2}e^{-4p}$$

3. Retrouver l'original de $F(p) = \frac{1}{p(p+1)}$ puis celui de $G(p) = F(p) \times e^{-3p}$

$$F(p) = \frac{1}{p(p+1)} = \frac{1}{p} - \frac{1}{p+1} \text{ donc } f(t) = U(t) - e^{-t}U(t)$$

$$G(p) = F(p) \times e^{-3p} \text{ donc } g(t) = U(t-3) - e^{-(t-3)}U(t-3)$$

4. Déterminer les réels A, B, C et D tels que : $H(p) = \frac{p+3}{p^2(p^2+1)} = \frac{A}{p^2} + \frac{B}{p} + \frac{Cp+D}{p^2+1}$

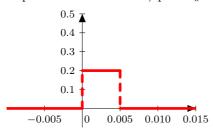
On a:
$$\lim_{p\to 0} p^2 H(p) = \frac{3}{1} = 3 = A + 0 + 0$$
 donc $A = 3$

On a:
$$\lim_{p \to i} (p^2 + 1)H(p) = \frac{i+3}{-1} = -3 - i = 0 + 0 + Bi + C$$
 donc $C = -3$ et $D = -1$

On a:
$$\lim_{p \to \infty} pH(p) = 0 = 0 + B + C + 0$$
 donc $C = -B = -1$

Exercice 2

1. (a) Représenter la fonction γ pour $t_0 = 0,005$ et K = 0,2.



(b) Déterminer, en fonction de t_0 et K, la transformée de Laplace Γ de la fonction γ .

On a :
$$\Gamma(p) = \frac{K}{p} - \frac{K}{p}e^{-t_0p}$$

2. En appliquant la transformation de Laplace aux deux membres de l'équation différentielle (2), déterminer F(p).

En appliquant la transformée à l'équation différentielle, on a :

$$\frac{1}{200}(pF(p) - 0) + F(p) = \frac{K}{p}(1 - e^{-t_0 p})$$

puis
$$\left(\frac{p}{200} + 1\right) F(p) = \frac{K}{p} (1 - e^{-t_0 p})$$

et enfin

$$F(p) = \frac{K}{p\left(\frac{p}{200} + 1\right)} (1 - e^{-t_0 p})$$

- 3. (a) Déterminer les réels a et b tels que : $\frac{200}{p(p+200)} = \frac{a}{p} + \frac{b}{p+200}$ Notons $G(p) = \frac{200}{p(p+200)}$ On a : $\lim_{p\to 0} pG(p) = 1$ et $\lim_{p\to -200} p + 200G(p) = -1$ donc $\frac{200}{p(p+200)} = \frac{1}{p} - \frac{1}{p+200}$
 - (b) En déduire l'original f de la fonction F.

On a alors :
$$F(p) = \frac{K}{p\left(\frac{p}{200} + 1\right)} (1 - e^{-t_0 p})$$

donc $F(p) = \frac{K}{200p(p + 200)} (1 - e^{-t_0 p})$
donc $F(p) = K \times \left(\frac{1}{p} - \frac{1}{p + 200}\right) (1 - e^{-t_0 p})$
donc $F(p) = K \times \left(\frac{1}{p} - \frac{1}{p + 200}\right) - K \times \left(\frac{1}{p} - \frac{1}{p + 200}\right) e^{-t_0 p}$
donc $F(t) = K \times \left(U(t) - e^{-200t}U(t)\right) - K \times \left(U(t - t_0) - e^{-200(t - t_0)}U(t - t_0)\right)$

Lorsque
$$t < 0$$
, on a : $U(t) = U(t - t_0) = 0$ donc $f(t) = 0 - 0 = 0$

Lorsque
$$0 \le t < t_0$$
, on a : $U(t)=1$ et $U(t-t_0)=0$
$$\mathrm{donc}\ f(t)=K\times \left(1-e^{-200t}\right)-0=K\times (1-e^{-200t})$$

Lorsque
$$t_0 \le t$$
, on a : $U(t) = 1$ et $U(t - t_0) = 1$
donc $f(t) = K \times (1 - e^{-200t}) - K \times (1 - e^{-200(t - t_0)}) = K \times (e^{200t_0} - 1)e^{-200t}$

(c) Donner le sens de variation de la fonction f sur chacun des intervalles $[0; t_0[$ et $[t_0; +\infty[$.

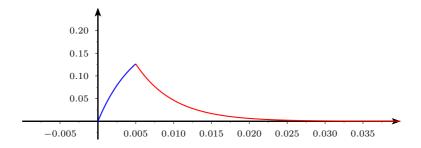
Sur
$$[0\;;\;t_0[,\;{\rm on\;a}:f'(t)=+200K\times(1-e^{-200t})>0\;{\rm donc}\;f$$
 est strictement croissante.

Sur
$$[t_0; +\infty[$$
, on : $f'(t) = -200K \times (e^{200t_0} - 1)e^{-200t} < 0$ donc f est strictement décroissante

Déterminer les limites de la fonction f aux bornes de ces deux intervalles.

En
$$0_-: f(t) = 0$$
, donc $\lim_{t \to 0_-} f(t) = 0$
En $0_+: f(t) = K \times (1 - e^{-200t})$, donc $\lim_{t \to 0_+} f(t) = K(1 - 1) = 0$
En $t_{0_-}: f(t) = K \times (1 - e^{-200t})$, donc $\lim_{t \to 0_-} f(t) = K \times (1 - e^{-200t_0})$
En $t_{0_+}: f(t) = K \times (e^{200t_0} - 1)e^{-200t}$, donc $\lim_{t \to 0_-} f(t) = K \times (1 - e^{-200t_0})$
En $+\infty: f(t) = K \times (e^{200t_0} - 1)e^{-200t}$, donc $\lim_{t \to 0_-} f(t) = 0$

(d) Représenter la fonction f pour $t_0 = 0,005$ et K = 0,2.



Exercice 3

1. En appliquant la transformation de Laplace aux deux membres de l'équation différentielle (E^\prime) , montrer

que
$$S(p) = \frac{18}{(p^2 + 4)(p^2 + 9)}$$

On obtient : $p(PS - 0) - 0 + 9S = 9 \times \frac{2}{p^2 + 4}$

Puis
$$(p^2+9)S = \frac{18}{p^2+4}$$
 et enfin $S(p) = \frac{18}{(p^2+4)(p^2+9)}$

2. Déterminer les nombres réels a et b tels que, pour tout nombre réel p, on ait

$$S(p) = \frac{a}{p^2 + 4} + \frac{b}{p^2 + 9}$$

$$\frac{a}{p^2+4} + \frac{b}{p^2+9} = \frac{a(p^2+9) + b(p^2+4)}{(p^2+4)(p^2+9)} = \frac{(a+b)p^2 + 9a + 4b}{(p^2+4)(p^2+9)} \text{ et } S(p) = \frac{18}{(p^2+4)(p^2+9)}$$

Pour que $\frac{a}{p^2 + 4} + \frac{b}{p^2 + 9} = S(p)$ on choisit : a + b = 0 et 9a + 4b = 18

donc
$$b = -a$$
 et $5a = 18$ donc $a = \frac{18}{5}$ et $b = \frac{-18}{5}$

3. En déduire l'expression de s(t) pour tout nombre réel t positif ou nul.

On a trouvé que :
$$S(p) = \frac{18}{5} \cdot \frac{1}{p^2+4} - \frac{18}{5} \cdot \frac{1}{p^2+9}$$

donc
$$S(p) = \frac{9}{5} \cdot \frac{2}{p^2 + 4} - \frac{6}{5} \cdot \frac{3}{p^2 + 9}$$

donc
$$s(t) = \frac{9}{5}\sin(2t)U(t) - \frac{6}{5}\sin(3t)U(t)$$